2.3 Polynomials with Higher Degrees

DEFINITION The Vocabulary of Polynomials

- Each monomial in this sum— $a_n x^n$, $a_{n-1} x^{n-1}$, ..., a_0 —is a **term** of the polynomial.
- A polynomial function written in this way, with terms in descending degree, is written in standard form.
- The constants $a_n, a_{n-1}, \ldots, a_0$ are the **coefficients** of the polynomial.
- The term $a_n x^n$ is the **leading term**, and a_0 is the constant term.

Ex 1 Graph Transformation of a Monomial Function (describe) $y = 4x^3$

(a)
$$g(x) = 4(x + 1)^3$$

Monomial function
$$g(x) = 4x^3$$
Shift left 1 unit

(a)
$$g(x) = 4(x + 1)^3$$

monomial function

 $g(x) = 4x^3$

Shift left 1 unit

(b) $h(x) = -(x - 2)^4 + 5$

monomial function
 $h(x) = -1x^4$

Shift right 2 units

THEOREM Local Extrema and Zeros of Polynomial Functions

EXPLORATION 1 Investigating the End Behavior of $f(x) = a_n x^n$

Graph each function in the window [-5, 5] by [-15, 15]. Describe the end behavior using $\lim_{x \to \infty} f(x)$ and $\lim_{x \to -\infty} f(x)$. **1.** (a) $f(x) = 2x^3$ (b) $f(x) = -x^3$ (c) $f(x) = x^5$ (d) $f(x) = -0.5x^7$ **1.** (a) ∞ ; $-\infty$ (b) $-\infty$; ∞ (c) ∞ ; $-\infty$ (d) $-\infty$; ∞

1. (a)
$$f(x) = 2x^3$$

(b)
$$f(x) = -x^3$$

1. (a)
$$\infty$$
; $-\infty$ (b) $-\infty$; ∞

(c)
$$f(x) = x^5$$

(d)
$$f(x) = -0.5x^7$$

(c)
$$\infty$$
; $-\infty$ (d) $-\infty$; ∞

2. (a)
$$f(x) = -3x^4$$

(b)
$$f(r) = 0.6r^4$$

2. (a)
$$-\infty$$
; $-\infty$ (b) ∞ ; ∞

(c)
$$f(x) = 2x^6$$

(d)
$$f(x) = -0.5x^2$$

2. (a)
$$f(x) = -3x^4$$
 (b) $f(x) = 0.6x^4$ **2.** (a) $-\infty; -\infty$ (b) $\infty; \infty$ (c) $f(x) = 2x^6$ (d) $f(x) = -0.5x^2$ (c) $\infty; \infty$ (d) $-\infty; -\infty$

3. (a)
$$f(x) = -0.3x^5$$
 (b) $f(x) = -2x^2$

(b)
$$f(x) = -2x^2$$

3. (a)
$$-\infty$$
; ∞ (b) $-\infty$; $-\infty$

(c)
$$f(x) = 3x^4$$

(c)
$$f(x) = 3x^4$$
 (d) $f(x) = 2.5x^3$

(c)
$$\infty$$
; ∞ (d) ∞ ; $-\infty$

Describe the patterns you observe. In particular, how do the values of the coefficient a_n and the degree n affect the end behavior of $f(x) = a_n x^n$?

Ex2 Graphing Combinations of Monomials

a)
$$f(x) = x^3 + x$$
 $y_1 = x^3$
 $y_2 = x$
 $y_3 = x^3 + x$ blends
the two

b) $g(x) = x^3 - x$

